Files
2024-05-23 21:24:52 +02:00

532 lines
11 KiB
C++

#include "axp192.h"
#include "esphome/core/log.h"
namespace esphome {
namespace axp192 {
static const char *TAG = "axp192.sensor";
void AXP192Component::setup()
{
begin(false, false, false, false, false);
}
void AXP192Component::dump_config() {
ESP_LOGCONFIG(TAG, "AXP192:");
LOG_I2C_DEVICE(this);
LOG_SENSOR(" ", "Battery Level", this->batterylevel_sensor_);
}
float AXP192Component::get_setup_priority() const { return setup_priority::DATA; }
void AXP192Component::update() {
if (this->batterylevel_sensor_ != nullptr) {
// To be fixed
// This is not giving the right value - mostly there to have some sample sensor...
float vbat = GetBatVoltage();
float batterylevel = 100.0 * ((vbat - 3.0) / (4.1 - 3.0));
ESP_LOGD(TAG, "Got Battery Level=%f (%f)", batterylevel, vbat);
if (batterylevel > 100.) {
batterylevel = 100;
}
this->batterylevel_sensor_->publish_state(batterylevel);
}
UpdateBrightness();
}
void AXP192Component::begin(bool disableLDO2, bool disableLDO3, bool disableRTC, bool disableDCDC1, bool disableDCDC3)
{
// Set LDO2 & LDO3(TFT_LED & TFT) 3.0V
Write1Byte(0x28, 0xcc);
// Set ADC sample rate to 200hz
Write1Byte(0x84, 0b11110010);
// Set ADC to All Enable
Write1Byte(0x82, 0xff);
// Bat charge voltage to 4.2, Current 100MA
Write1Byte(0x33, 0xc0);
// Depending on configuration enable LDO2, LDO3, DCDC1, DCDC3.
byte buf = (Read8bit(0x12) & 0xef) | 0x4D;
if(disableLDO3) buf &= ~(1<<3);
if(disableLDO2) buf &= ~(1<<2);
if(disableDCDC3) buf &= ~(1<<1);
if(disableDCDC1) buf &= ~(1<<0);
Write1Byte(0x12, buf);
// 128ms power on, 4s power off
Write1Byte(0x36, 0x0C);
if(!disableRTC)
{
// Set RTC voltage to 3.3V
Write1Byte(0x91, 0xF0);
// Set GPIO0 to LDO
Write1Byte(0x90, 0x02);
}
// Disable vbus hold limit
Write1Byte(0x30, 0x80);
// Set temperature protection
Write1Byte(0x39, 0xfc);
// Enable RTC BAT charge
Write1Byte(0x35, 0xa2 & (disableRTC ? 0x7F : 0xFF));
// Enable bat detection
Write1Byte(0x32, 0x46);
}
void AXP192Component::Write1Byte( uint8_t Addr , uint8_t Data )
{
this->write_byte(Addr, Data);
}
uint8_t AXP192Component::Read8bit( uint8_t Addr )
{
uint8_t data;
this->read_byte(Addr, &data);
return data;
}
uint16_t AXP192Component::Read12Bit( uint8_t Addr)
{
uint16_t Data = 0;
uint8_t buf[2];
ReadBuff(Addr,2,buf);
Data = ((buf[0] << 4) + buf[1]); //
return Data;
}
uint16_t AXP192Component::Read13Bit( uint8_t Addr)
{
uint16_t Data = 0;
uint8_t buf[2];
ReadBuff(Addr,2,buf);
Data = ((buf[0] << 5) + buf[1]); //
return Data;
}
uint16_t AXP192Component::Read16bit( uint8_t Addr )
{
uint32_t ReData = 0;
uint8_t Buff[2];
this->read_bytes(Addr, Buff, sizeof(Buff));
for( int i = 0 ; i < sizeof(Buff) ; i++ )
{
ReData <<= 8;
ReData |= Buff[i];
}
return ReData;
}
uint32_t AXP192Component::Read24bit( uint8_t Addr )
{
uint32_t ReData = 0;
uint8_t Buff[3];
this->read_bytes(Addr, Buff, sizeof(Buff));
for( int i = 0 ; i < sizeof(Buff) ; i++ )
{
ReData <<= 8;
ReData |= Buff[i];
}
return ReData;
}
uint32_t AXP192Component::Read32bit( uint8_t Addr )
{
uint32_t ReData = 0;
uint8_t Buff[4];
this->read_bytes(Addr, Buff, sizeof(Buff));
for( int i = 0 ; i < sizeof(Buff) ; i++ )
{
ReData <<= 8;
ReData |= Buff[i];
}
return ReData;
}
void AXP192Component::ReadBuff( uint8_t Addr , uint8_t Size , uint8_t *Buff )
{
this->read_bytes(Addr, Buff, Size);
}
void AXP192Component::UpdateBrightness()
{
ESP_LOGD(TAG, "Brightness=%f (Curr: %f)", brightness_, curr_brightness_);
if (brightness_ == curr_brightness_)
{
return;
}
curr_brightness_ = brightness_;
const uint8_t c_min = 7;
const uint8_t c_max = 12;
auto ubri = c_min + static_cast<uint8_t>(brightness_ * (c_max - c_min));
if (ubri > c_max)
{
ubri = c_max;
}
uint8_t buf = Read8bit( 0x28 );
Write1Byte( 0x28 , ((buf & 0x0f) | (ubri << 4)) );
}
bool AXP192Component::GetBatState()
{
if( Read8bit(0x01) | 0x20 )
return true;
else
return false;
}
uint8_t AXP192Component::GetBatData()
{
return Read8bit(0x75);
}
//---------coulombcounter_from_here---------
//enable: void EnableCoulombcounter(void);
//disable: void DisableCOulombcounter(void);
//stop: void StopCoulombcounter(void);
//clear: void ClearCoulombcounter(void);
//get charge data: uint32_t GetCoulombchargeData(void);
//get discharge data: uint32_t GetCoulombdischargeData(void);
//get coulomb val affter calculation: float GetCoulombData(void);
//------------------------------------------
void AXP192Component::EnableCoulombcounter(void)
{
Write1Byte( 0xB8 , 0x80 );
}
void AXP192Component::DisableCoulombcounter(void)
{
Write1Byte( 0xB8 , 0x00 );
}
void AXP192Component::StopCoulombcounter(void)
{
Write1Byte( 0xB8 , 0xC0 );
}
void AXP192Component::ClearCoulombcounter(void)
{
Write1Byte( 0xB8 , 0xA0 );
}
uint32_t AXP192Component::GetCoulombchargeData(void)
{
return Read32bit(0xB0);
}
uint32_t AXP192Component::GetCoulombdischargeData(void)
{
return Read32bit(0xB4);
}
float AXP192Component::GetCoulombData(void)
{
uint32_t coin = 0;
uint32_t coout = 0;
coin = GetCoulombchargeData();
coout = GetCoulombdischargeData();
//c = 65536 * current_LSB * (coin - coout) / 3600 / ADC rate
//Adc rate can be read from 84H ,change this variable if you change the ADC reate
float ccc = 65536 * 0.5 * (coin - coout) / 3600.0 / 25.0;
return ccc;
}
//----------coulomb_end_at_here----------
uint16_t AXP192Component::GetVbatData(void){
uint16_t vbat = 0;
uint8_t buf[2];
ReadBuff(0x78,2,buf);
vbat = ((buf[0] << 4) + buf[1]); // V
return vbat;
}
uint16_t AXP192Component::GetVinData(void)
{
uint16_t vin = 0;
uint8_t buf[2];
ReadBuff(0x56,2,buf);
vin = ((buf[0] << 4) + buf[1]); // V
return vin;
}
uint16_t AXP192Component::GetIinData(void)
{
uint16_t iin = 0;
uint8_t buf[2];
ReadBuff(0x58,2,buf);
iin = ((buf[0] << 4) + buf[1]);
return iin;
}
uint16_t AXP192Component::GetVusbinData(void)
{
uint16_t vin = 0;
uint8_t buf[2];
ReadBuff(0x5a,2,buf);
vin = ((buf[0] << 4) + buf[1]); // V
return vin;
}
uint16_t AXP192Component::GetIusbinData(void)
{
uint16_t iin = 0;
uint8_t buf[2];
ReadBuff(0x5C,2,buf);
iin = ((buf[0] << 4) + buf[1]);
return iin;
}
uint16_t AXP192Component::GetIchargeData(void)
{
uint16_t icharge = 0;
uint8_t buf[2];
ReadBuff(0x7A,2,buf);
icharge = ( buf[0] << 5 ) + buf[1] ;
return icharge;
}
uint16_t AXP192Component::GetIdischargeData(void)
{
uint16_t idischarge = 0;
uint8_t buf[2];
ReadBuff(0x7C,2,buf);
idischarge = ( buf[0] << 5 ) + buf[1] ;
return idischarge;
}
uint16_t AXP192Component::GetTempData(void)
{
uint16_t temp = 0;
uint8_t buf[2];
ReadBuff(0x5e,2,buf);
temp = ((buf[0] << 4) + buf[1]);
return temp;
}
uint32_t AXP192Component::GetPowerbatData(void)
{
uint32_t power = 0;
uint8_t buf[3];
ReadBuff(0x70,2,buf);
power = (buf[0] << 16) + (buf[1] << 8) + buf[2];
return power;
}
uint16_t AXP192Component::GetVapsData(void)
{
uint16_t vaps = 0;
uint8_t buf[2];
ReadBuff(0x7e,2,buf);
vaps = ((buf[0] << 4) + buf[1]);
return vaps;
}
void AXP192Component::SetSleep(void)
{
Write1Byte(0x31 , Read8bit(0x31) | ( 1 << 3)); // Power off voltag 3.0v
Write1Byte(0x90 , Read8bit(0x90) | 0x07); // GPIO1 floating
Write1Byte(0x82, 0x00); // Disable ADCs
Write1Byte(0x12, Read8bit(0x12) & 0xA1); // Disable all outputs but DCDC1
}
// -- sleep
void AXP192Component::DeepSleep(uint64_t time_in_us)
{
SetSleep();
esp_sleep_enable_ext0_wakeup((gpio_num_t)37, LOW);
if (time_in_us > 0)
{
esp_sleep_enable_timer_wakeup(time_in_us);
}
else
{
esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_TIMER);
}
(time_in_us == 0) ? esp_deep_sleep_start() : esp_deep_sleep(time_in_us);
}
void AXP192Component::LightSleep(uint64_t time_in_us)
{
if (time_in_us > 0)
{
esp_sleep_enable_timer_wakeup(time_in_us);
}
else
{
esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_TIMER);
}
esp_light_sleep_start();
}
// 0 not press, 0x01 long press, 0x02 press
uint8_t AXP192Component::GetBtnPress()
{
uint8_t state = Read8bit(0x46);
if(state)
{
Write1Byte( 0x46 , 0x03 );
}
return state;
}
uint8_t AXP192Component::GetWarningLevel(void)
{
return Read8bit(0x47) & 0x01;
}
float AXP192Component::GetBatVoltage()
{
float ADCLSB = 1.1 / 1000.0;
uint16_t ReData = Read12Bit( 0x78 );
return ReData * ADCLSB;
}
float AXP192Component::GetBatCurrent()
{
float ADCLSB = 0.5;
uint16_t CurrentIn = Read13Bit( 0x7A );
uint16_t CurrentOut = Read13Bit( 0x7C );
return ( CurrentIn - CurrentOut ) * ADCLSB;
}
float AXP192Component::GetVinVoltage()
{
float ADCLSB = 1.7 / 1000.0;
uint16_t ReData = Read12Bit( 0x56 );
return ReData * ADCLSB;
}
float AXP192Component::GetVinCurrent()
{
float ADCLSB = 0.625;
uint16_t ReData = Read12Bit( 0x58 );
return ReData * ADCLSB;
}
float AXP192Component::GetVBusVoltage()
{
float ADCLSB = 1.7 / 1000.0;
uint16_t ReData = Read12Bit( 0x5A );
return ReData * ADCLSB;
}
float AXP192Component::GetVBusCurrent()
{
float ADCLSB = 0.375;
uint16_t ReData = Read12Bit( 0x5C );
return ReData * ADCLSB;
}
float AXP192Component::GetTempInAXP192()
{
float ADCLSB = 0.1;
const float OFFSET_DEG_C = -144.7;
uint16_t ReData = Read12Bit( 0x5E );
return OFFSET_DEG_C + ReData * ADCLSB;
}
float AXP192Component::GetBatPower()
{
float VoltageLSB = 1.1;
float CurrentLCS = 0.5;
uint32_t ReData = Read24bit( 0x70 );
return VoltageLSB * CurrentLCS * ReData/ 1000.0;
}
float AXP192Component::GetBatChargeCurrent()
{
float ADCLSB = 0.5;
uint16_t ReData = Read13Bit( 0x7A );
return ReData * ADCLSB;
}
float AXP192Component::GetAPSVoltage()
{
float ADCLSB = 1.4 / 1000.0;
uint16_t ReData = Read12Bit( 0x7E );
return ReData * ADCLSB;
}
float AXP192Component::GetBatCoulombInput()
{
uint32_t ReData = Read32bit( 0xB0 );
return ReData * 65536 * 0.5 / 3600 /25.0;
}
float AXP192Component::GetBatCoulombOut()
{
uint32_t ReData = Read32bit( 0xB4 );
return ReData * 65536 * 0.5 / 3600 /25.0;
}
void AXP192Component::SetCoulombClear()
{
Write1Byte(0xB8,0x20);
}
void AXP192Component::SetLDO2( bool State )
{
uint8_t buf = Read8bit(0x12);
if( State == true )
{
buf = (1<<2) | buf;
}
else
{
buf = ~(1<<2) & buf;
}
Write1Byte( 0x12 , buf );
}
void AXP192Component::SetLDO3(bool State)
{
uint8_t buf = Read8bit(0x12);
if( State == true )
{
buf = (1<<3) | buf;
}
else
{
buf = ~(1<<3) & buf;
}
Write1Byte( 0x12 , buf );
}
void AXP192Component::SetChargeCurrent(uint8_t current)
{
uint8_t buf = Read8bit(0x33);
buf = (buf & 0xf0) | (current & 0x07);
Write1Byte(0x33, buf);
}
void AXP192Component::PowerOff()
{
Write1Byte(0x32, Read8bit(0x32) | 0x80);
}
void AXP192Component::SetAdcState(bool state)
{
Write1Byte(0x82, state ? 0xff : 0x00);
}
}
}